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1. Introduction

The partly linear additive Cox model is an extension of the Cox (1972) model, in which the
log-relative risk takes the partly linear additive form. So the conditional hazard of the failure
time given the covariate value z = (x,w) ∈ Rd ×RJ is modeled as

λ(t|x,w) = λ0(t) exp(x′β + φ1(w1) + · · ·+ φJ(wJ)),(1.1)

where λ0 is the unknown baseline hazard function, β is a d-dimensional regression parameter,
and φ1, . . . , φJ are unknown smooth functions. In many situations, our main interest is in
estimating the regression parameter β, which provides a concise and easily interpretable
measure of the effect of the covariate X in the presence of the auxiliary covariate W . For
instance, when X is a treatment covariate and W is a vector of covariates describing other
characteristics of the patients, β can be interpreted as a measure of the treatment effect
after adjusting for the effect of W . Although a categorical-type covariate X is our main
motivation for this model, X can also be a continuous-type variable or a mixture of the two
types. In the proportional hazards model framework with multi-dimensional covariates, this
model allows flexible modeling of the covariate effect and in the same time maintains the
feature of being parsimonious and easy to interpret enjoyed by the Cox model.

Model (1.1) is closely related to the partly linear Cox model

λ(t|x,w) = λ0(t) exp(x′β0 + b(w)),(1.2)

where b : RJ → R. In this model, no further assumption is made on the form of b. For
high-dimensional covariate W , it may require unrealistic large samples to estimate this model
because of “curse of dimensionality.” Indeed, a range of models between and beyond (1.1) and
(1.2) can be considered. For example, an ANOVA type decomposition for b can be considered,
and model (1.1) can be viewed as a first order approximation. Interaction between the
variables in X and W can also be considered. Excellent discussions on these issues can be
found in Stone (1985, 1994). We focus on the partly linear additive model (1.1) because it
directly generalizes the (linear) Cox model. See also the discussions in Hastie and Tibshirani
(1986, 1990).

Many authors have considered nonparametric and semiparametric modeling of covariate
effects on the censored failure time. For example, Sasieni (1992a, 1992b) calculated
information bound for estimating β in model (1.2) and suggested using a spline based partial
likelihood to estimate this model. His calculation suggests that it is possible to estimate β at
the usual root-n rate of convergence in spite of the presence of two nonparametric functions,
and in spite that the function b cannot be estimated at the root-n rate. Grambsch, Therneau
and Fleming (1990) and Fleming and Harington (1991, Section 4.5, pages 163-168) proposed
to use smoothed martingale residuals to explore the functional form of the covariate effect
in the Cox model. The martingale residual approach was further discussed by Grambsch,
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Therneau and Fleming (1995). Hastie and Tibshirani (1986, 1990) have considered a fully
nonparametric additive Cox model in exploratory data analysis. Their estimation approach is
to maximize a penalized partial likelihood. Kooperberg, Stone and Truong (1995) considered
a general nonparametric hazard regression problem. Their approach is to maximize the
likelihood function over an approximating parameter space consisting of sums of tensor
products of polynomial splines as in Stone (1994). They established rate of convergence
of their estimator. Several generalizations of the Cox model have also been studied in the
literature. For example, O’Sullivan (1993) considered the proportional hazards model with a
fully nonparametric relative risk function. He obtained rate of convergence of the penalized
partial likelihood estimator uniformly with respect to the penalty parameter. Sasieni
(1992a) calculated the information bound for the continuously stratified Cox model and
suggested a simple form of kernel-smoothed partial likelihood estimator. Dabrowska (1997)
proved asymptotic normality of the estimators of the regression parameter and the stratified
cumulative hazard in this model based on a general kernel-smoothed partial likelihood. A
survey of other regression models for censored survival data can be found in Andersen,
Borgan, Gill and Keiding (1993), Chapter VII.

In this paper, we study the asymptotic properties of the partial likelihood estimator
of β and (φ01, . . . , φ0J) of model (1.1) using polynomial splines. The use of polynomial
splines in estimating the fully nonparametric additive Cox model based on the partial
likelihood was first suggested by Stone (1986b). It appears that systematic study of this
estimation approach for the partly linear additive model (1.1) has not been done in the
literature. Although previous results on the asymptotic normality of the maximum partial
likelihood estimator in the (linear) Cox model (Tsiatis, 1981; Andersen and Gill, 1982) and
the information calculation (see Section 4) suggests that β should be estimable at the usual
root-n rate of convergence in the present model, the proof is complicated by the presence
of the nonparametric component φj’s in the partial likelihood and that their estimators
converge at rates slower than root-n. We deal with these difficulties by using some results
from the empirical process theory and the projection idea in information calculation for
semiparametric models. Under appropriate conditions, we show that, with a range of choices
of the smoothing parameter (the number of B-spline basis functions) required for estimation
of the nonparametric components, the maximum partial likelihood estimator of β is root-n
consistent, asymptotically normal and achieves information bound, although the convergence
rate of the estimator of the nonparametric part is slower than root-n. The result that a range
of the smoothing parameter is allowed for the asymptotic normality of β̂n suggests that the
first order asymptotic performance of β̂n is relatively insensitive to the specification of the
smoothing parameter. This differs from nonparametric curve estimation in which the optimal
choice of the smoothing parameter is required to achieve the optimal rate of convergence.
Rates of convergence for nonparametric component estimators are also obtained. These rates
are comparable to those obtained in nonparametric regression.

The organization of this paper is as follows. Section 2 describes the estimator using
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polynomial splines. An example is included to illustrate the computation of the estimator in
Splus. The main results are stated in Section 3. In Section 4, we calculate the information
bound for β in the partly linear additive Cox model. Section 5 contains proofs of the main
results. Section 6 briefly discusses some aspects of incorporating time-dependent covariates
in model (1.1). Several technical details are put together in the Appendix.

2. Definition and computation of the estimator

Let T u and T c be the failure time and censoring time, respectively. The observable random
variable is (T,∆, Z) ∈ R+ × {0, 1} × Rd+J , where T = min{T u, T c},∆ = {T u ≤ T c},
Z = (X,W ) withX ∈ Rd,W ∈ RJ . Throughout, we assume that T u and T c are conditionally
independent given the covariate Z. Let (Ti,∆i, Zi), i = 1, . . . , n be an independent random
sample identically distributed as (T,∆, Z).

We assume that W takes values in [a, b]J where a and b are finite numbers. Let a = ξ0 <
ξ1 < · · · < ξK < ξK+1 = b be a partition of [a, b] into K subintervals IKt = [ξt, ξt+1), t =
0, . . . , K−1 and IKK = [ξK , ξK+1], where K ≡ Kn = nv with 0 < v < 0.5 is a positive integer
such that max1≤k≤K+1 |ξk− ξk−1| = O(n−v). The precise range of v will be given in Theorem
3.3 in Section 3. Let Sn be the space of polynomial splines of order l ≥ 1 consisting of
functions s satisfying: (i) the restriction of s to IKt is a polynomial of order l for 1 ≤ t ≤ K;
(ii) for l ≥ 2 and 0 ≤ l′ ≤ l − 2, s is l′ times continuously differentiable on [a, b]. This
definition is phrased after Stone (1985), which is a descriptive version of Schumaker (1981),
page 108, Definition 4.1.

Let Φn be the collection of functions φ on [a, b]J with the additive form φ(w) = φ1(w1) +
· · ·+φJ(wJ), where each component φj belongs to Sn. According to Schumaker (1981), page
117, Corollary 4.10, there exists a local basis {Bt, 1 ≤ t ≤ qn} for Sn, where qn ≡ Kn + l.
Thus for any φj ∈ Sn, we can write

φj(zj) =
qn∑
t=1

bjtBt(zj), 1 ≤ j ≤ J.(2.3)

Let b = {bjt : 1 ≤ j ≤ J, 1 ≤ t ≤ qn} be the collection of all the coefficients in the
representation (2.3). Under suitable smoothness assumptions, φ0j’s can be well approximated
by functions in Sn. Therefore, we seek a member of Φn along with a value of β that maximizes
the partial likelihood function. Specifically, let θ̂ ≡ (β̂n, b̂n) with b̂n = {b̂jt : 1 ≤ j ≤ J, 1 ≤
t ≤ qn} be the value that maximizes

ln(β, φ) = n−1
n∑
i=1

∆i

X ′iβ + φ(Wi)− log
∑

k:Tk≥Ti
exp[X ′kβ + φ(Wk)]

 ,(2.4)

with φ(Wi) =
∑J
j=1 φj(Wji), 1 ≤ i ≤ n where φj is given in (2.3), with respect to (β,b) ∈

Rd × Rqn . Because the regression function φj’s can only be identified up to an additive
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constant, we will center the estimators of φj’s as follows. Let

φ̂∗jn(zj) =
qn∑
t=1

b̂jtBt(zj), and φ
∗
jn =

∑n
i=1 ∆iφ̂

∗
jn(Wji)∑n

i=1 ∆i

.

The resulting estimator of φj is defined to be

φ̂jn(zj) = φ̂∗jn(zj)− φ
∗
jn. 1 ≤ j ≤ J.

So φ̂jn is a centered version of φ̂∗jn and satisfies
∑n
i=1 ∆iφ̂jn(Wji) = 0, 1 ≤ j ≤ J. Notice that

(β̂n, φ̂
∗
1n, . . . , φ̂

∗
Jn) maximizes the partial likelihood if and only if (β̂n, φ̂1n, . . . , φ̂Jn) maximizes

the partial likelihood. The use of this particular form of centering instead of the usual
centering by average is to simplify the asymptotic analysis, see the comments in Section 3.

To make statistical inference about β, it is necessary to know or to approximate the
sampling distribution of β̂n. As stated in the next section, the distribution of β̂n can be
approximated by a normal distribution in the large sample sense. Unfortunately, the variance
matrix of this normal distribution can not be expressed in terms of quantities that can be
easily estimated. We suggest using the (inverse of) observed partial information matrix,
taking into account that we are also estimating the “nuisance” parameter b, to estimate
the variance matrix of β̂n as in the (linear) Cox model. This variance estimator is available
from any program that fits the Cox regression model. We have not been able to prove the
consistency of this variance estimator. Heuristics based on the finite-dimensional parametric
model and some limited simulation suggest that this estimator should work well. An example
is given at the end of this section.

We have used a prespecified partition {ξt, 1 ≤ t ≤ Kn} and fixed basis functions. It is
probably preferable to adaptively select the partition and the basis functions. Large sample
theory of data driven procedures for the present problem appears to be extremely difficult
and is beyond the scope of this paper. On the other hand, if our main purpose is to estimate
β, then any reasonable choice of {ξt, 1 ≤ t ≤ Kn} may work well. This is because as long
as it guarantees that the estimators of φj’s converge at a certain rate which may be much

slower than n1/2, then β̂n has n1/2 rate of convergence and is asymptotically normal. See
Theorem 3.3 and Remark 3.1 in Section 3, where the range of Kn that ensures asymptotic
normality of β̂n is given.

Although other estimation approaches can also be used, such as the penalized partial
likelihood method used by Hastie and Tibshirani (1990) and O’Sullivan (1993), the above
method has the advantage that it can be implemented with the existing Cox regression
program. For example, in Splus (Version 3.4, 1996 MathSoft Inc.), two functions coxph and
bs can accomplish most of the computation, where coxph is for fitting the Cox model and bs
creates a basis matrix for polynomial splines. For the bs function, it has arguments for knots
placement and degree of the polynomials. The default value 3 of degree gives the cubic-spline
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basis. There are two ways for knots placement. The first is to explicitly specify the knots
such as bs(x,knots= (2, 4, 6)) which places three knots at three points 2, 4 and 6. A simpler
way is to specify the degrees of freedom. For example, bs(x, df= 6) places the knots at the
25th, 50th and 75th percentile of x. Detailed description of these two functions can be found
in the help file of Splus.

We now give a simple simulated example. The model we used to generate the pseudo-
random numbers is

λ(t|x,w1, w2) = λ0 exp(βx+ φ1(w1) + φ2(w2)),

where β = 1, and where φ1(w1) = 1.5(w1− 1.2)2 and φ2(w2) = 2 log(200 + (w2− 1.2)3). The
joint distribution of (X,W1,W2) is multivariate normal with mean (0, 1.2, 1.2), standard
deviation (0.6, 0.6, 0.6) and all the pairwise correlations equal to 0.6. The baseline λ0 is
taken to be a constant equal to exp(−12) where 12 is approximately the expectation of
X+φ1(W1)+φ2(W2). The distribution of the censoring time given (x,w1, w2) is exponential
with mean equal to exp(2) = 7.39. So the censoring distribution does not depend on the
parameters of the distribution of T . The expected censoring rate is 20%. The following three
commands complete the main part of the computation:

p1 <- bs(w1,df = 6); p2 < − bs(w2,df = 6)
sim.dat <- list(time= T , status=censor.ind, x, p1, p2)
sim.fit <- coxph(Surv(time, status) ∼ x + p1 + p2, sim.dat, iter.max=20)

Here T is the vector of the simulated event times, censor.ind is the censoring indicator. Surv
is a Splus function that generates the appropriate response variable for coxph.

To examine the performance of the estimator of β in this example, 1000 datasets are
generated. In each dataset, the sample size n = 140. Table 1 summarizes the results. We
also computed the estimator β̂c using the true form of φ1 and φ2. This estimator serves as
a bench mark for evaluating β̂n.

Table 1. Summary of the example.

mean bias sd mean se

β̂n 1.04 0.04 0.20 0.19

β̂c 1.01 0.01 0.16 0.15

In the table, mean is the average of the 1000 estimated β’s; bias is the difference between
the mean and the generating value β = 1; sd is the sample standard deviation of the 1000
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estimated β’s, which represents the true variability of the estimators; and mean se is the
average of 1000 standard error estimates of the estimated β from coxph. It is seen that the
performance of β̂n in terms of bias and sd is slightly worse than but comparable to that
of β̂c. This is expected because β̂c is estimated under the generating model. Observe that
the standard error estimate based on the observed (partial) information works well for this
example.

3. Main results

In this section, we state the results on the information bound, the asymptotic distribution of
β̂n and rate of convergence of φ̂jn’s. We first state the conditions for the asymptotic results.
These conditions combine the usual conditions in the asymptotic studies of nonparametric
regression estimators and the Cox regression model with right-censored data.

Let k be a nonnegative integer, and let α ∈ (0, 1] be such that p = k + α > 0.5. Let A
be the class of functions h on [0, 1] whose kth derivative h(k) exists and satisfies a Lipschitz
condition of order α:

|h(k)(s)− h(k)(t)| ≤ C|s− t|α for s, t ∈ [0, 1].

(B1) (i) The regression parameter β0 belongs to an open subset (not necessarily bounded)
of Rd, and each φj ∈ A for 1 ≤ j ≤ J ; (ii) E(∆X) = 0 and E[∆φj(Wj)] = 0, 1 ≤ j ≤ J .

The requirement that β0 not be on the boundary of the parameter space is standard for
asymptotic normality. The smoothness assumption of φj’s is also often used in nonparametric
curve estimation. Usually, p = 1 (i.e., k = 0 and α = 1) or p = 2 (i.e., k = 1 and α = 1)
should be satisfied in many situations. These two cases roughly corresponds to assuming
that φj’s have bounded first order derivative or bounded second order derivative. (B1)(ii)
requires the covariate X and the regression function to be suitably centered. Because the
regression functions can only be identified up to a constant, centering removes this ambiguity.
Observe that the partial likelihood does not change when each Xi is centered by the sample
version of E(∆X), therefore, this centering does not impose any real restriction. Centering
by E(∆X) or E[∆φj(Wj)] instead of the simpler E(X) or Eφj(Wj)] simplifies information
calculation and asymptotic analysis, see Sections 4 and 5.

(B2) The failure time T u and the censoring time T c are conditionally independent given
the covariate Z.

(B3) (i) Only the observations for which the event time Ti, 1 ≤ i ≤ n is in a finite interval,
say [0, τ ], are used in the partial likelihood. At this point τ , the baseline cumulative hazard
function Λ0(τ) ≡

∫ τ
0 λ0(s)ds <∞. (ii) The covariate X takes values in a bounded subset of

Rd, and the covariate W takes values in [a, b]J .
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(B4) There exists a small positive constant ε such that (i) P (∆ = 1|Z) > ε; and (ii)
P (T c > τ |Z) > ε almost surely with respect to the probability measure of Z.

Condition (B2) is sufficient for the censoring mechanism to be noninformative, which is
often assumed in analyzing right-censored data. (B3)(i) is a major technical assumption,
which avoids the unboundedness of the partial likelihood and the partial score functions
at the end point of the support of the observed event time. Condition (B3)(ii) places the
boundedness condition on the covariates which is unpleasant, but it is not too restrictive
in many situations because one is often able to put some bound on the covariates. Similar
assumption is often used in asymptotic analysis of nonparametric regression problems.

Condition (B4)(i) ensures that the probability of being uncensored is positive regradless of
the covariate value. Condition (B4)(ii) prevents censoring from being too heavy. Conditions
(B3) and (B4) were also used by Sasieni (1992, Appendix) as sufficient conditions to ensure
that the sumspace of the tangent spaces for the hazard and the regression functions be closed,
so that the projections and information bound are well defined.

(B5) Let 0 < c1 < c2 < ∞ be two constants. The joint density f(t, w,∆ = 1) of
(T,W,∆ = 1) satisfies c1 ≤ f(t, w,∆ = 1) < c2 for all (t, w) ∈ [0, τ ]× [0, 1]J .

This condition and the centering condition in (B1)(ii) are needed for the model to
be identifiable. Note that weaker conditions can be formulated if only identifiability is
required. However, (B5) is also used in information bound calculation and in obtaining rate
of convergence for the estimator of each nonparametric component in the model.

(B6) Let q ≥ 1 be a positive integer. For 1 ≤ j ≤ J , the qth partial derivative of the joint
density f(t, x, w,∆ = 1) of (T,X,W,∆ = 1) with respect to t or wj exists and is bounded.
(For discrete covariate X, f(t, x, w,∆ = 1) is defined to be (∂2/∂t∂w)P (T ≤ t,X = x,W ≤
w,∆ = 1).)

This condition is used in showing that the partial score functions of the nonparametric
components in the least favorable direction are nearly zero, which is a key step in proving
the root-n convergence rate and asymptotic normality of the finite-dimensional estimator.

Let r(z) = exp(x′β + φ(w)), and let

M(t) ≡M(t|Z) = ∆1[T≤t] −
∫ t

0
1[T≥u]r(Z)dΛ0(u)(3.5)

be the usual counting process martingale associated with the Cox model. Throughout, let
‖·‖ denote the Eucledean norm, and let ‖·‖2 denote the L2 norm with respect to a probability
measure which should be clear in the context. Also, let ‖ · ‖∞ denote the supremum norm.
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Theorem 3.1. Under conditions (B1) to (B5), the efficient score for estimation of β in
the partly linear additive Cox model (1.1) is

l∗β(T,∆, Z) =
∫ τ

0
(X − a∗(t)− h∗(W ))dM(t),

where h∗(w) = h∗1(w1) + · · · + h∗J(wJ) and (a∗, h∗1, . . . , h
∗
J) are the unique L2 functions that

minimize

E∆‖X − a(T )− h1(W1)− · · · − hJ(WJ)‖2.

Here a∗ can expressed as a∗(t) = E[X − h∗(W )|T = t,∆ = 1]. The information bound for
estimation of β is

I(β) = E[l∗β(T,∆, Z)]⊗2 = E[∆(X − a∗(T )− h∗(W ))⊗2],

where x⊗2 ≡ xx′ for any column vector x ∈ Rd.

Theorem 3.2. Suppose that conditions (B1) to (B5) hold and 0 < v < 0.5. Then

E∆[X ′β̂n + φ̂n(W )− (X ′β + φ(W ))]2 = Op(n
−2vp + n−(1−v)).

Furthermore, if I(β) is nonsingular, then

‖β̂n − β‖2 = Op(n
−2vp + n−(1−v)),

and

‖φ̂jn − φj‖2
2 = Op(n

−2vp + n−(1−v)), 1 ≤ j ≤ J.

If v = 1/(1 + 2p), the rate of convergence of φ̂jn is np/(1+2p) which is the same as the
optimal rate in nonparametric regression. The following theorem states that the rate of
convergence of β̂n achieves n1/2 under condition (B6) in addition to conditions (B1) to (B5).

Theorem 3.3. Suppose that conditions (B1) to (B6) hold and that I(β) is nonsingular.
If v satisfies the restrictions 0.25/p < v < 0.5 and v(q + p) > 0.5, where p is the measure of
smoothness of φj defined in (B2), and q is defined in (B6), then

√
n(β̂n − β) = n−1/2I−1(β)

n∑
i=1

l∗β(Ti,∆i, Zi) + op(1)→d N(0,Σ),

where Σ = I−1(β).
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Remark 3.1. It is interesting to notice that the n1/2 rate of convergence and asymptotic
normality of β̂n hold for a range of the number of knots Kn = O(nv), although the rate of
convergence of ĝjn is slower than n1/2. Here v plays the role of a smoothness parameter. The

range of v that ensures asymptotic normality of β̂n depends on p and q, where p measures
the smoothness of the nonparametric parameters, and q can be regarded as a measure of the
smoothness of the model. If p = 1 and q = 1, then asymptotic normality of β̂n holds for
1/4 < v < 1/2. If p = 2 and q = 2, then asymptotic normality of β̂n holds for 1/8 < v < 1/2.

For estimating φj’s, the optimal choice of v is v = 1/(1 + 2p). This choice of v satisfies

the restriction on v stated in Theorem 3.3. With this choice, both β̂n and ĝn achieve the
optimal rates of convergence, n1/2 and np/(1+2p), respectively.

Remark 3.2. Because β̂n achieves the information lower bound and is asymptotically
linear, it is asymptotically efficient among all the regular estimators. See for example, Van
der Vaart (1991), and Bickel, Klaassen, Ritov and Wellner (1993), Chapter 3 (in particular,
Section 3.4) for a systematic discussion on the information bounds for finite dimensional
parameters in infinite dimensional models.

4. Information bound calculation

In this section, we calculate the information bound for estimation of β given in Theorem 3.1.
General theory on the asymptotic information bound for parameters in infinite-dimensional
models can be found in Van der Vaart (1991)and Bickel, Klaassen, Ritov and Wellner (1993).
The calculation here is based on the approach of Sasieni (1992b), who carried out information
calculation in the partly linear Cox model (1.2) in which projection onto a sumspace of two
nonorthogonal L2 spaces was calculated. We extend his method to the partly additive model
(1.1) in which projection onto the sumspace of J + 1 nonorthogonal L2 spaces needs to be
calculated.

We start with the log-likelihood function and the score functions associate with the
parameters. The log-likelihood for a sample of size one is, up to an additive term not
dependent on (β, φ,Λ),

l(β, φ,Λ) = ∆ log λ(T ) + ∆[X ′β + φ(W )]− Λ(T ) exp[X ′β + φ(W )],

where φ(W ) = φ1(W1)+· · ·+φJ(WJ). Consider a parametric smooth submodel {λ(η) : η ∈ R}
and {φj(ηj) : ηj ∈ R, 1 ≤ j ≤ J} in which λ(0) = λ and φj(0) = φj, and

∂ log λ(η)

∂η
(t)

∣∣∣∣∣
η=0

= a,

and
∂φj(ηj)

∂ηj
(wj)

∣∣∣∣∣
ηj=0

= hj(wj), 1 ≤ j ≤ J.

10



Recall r(z) = exp(x′β+φ(w)) and M is the martingale defined in (3.5). The score operators
for the hazard Λ and regression functions φj, and the score vector for β are the partial
derivatives of the likelihood l(β, φ1(η1), . . . , φJ(ηJ ),Λ(η)) with respect to η, η1, . . . , ηJ and β
evaluated at η = 0, η1 = 0, . . . , ηJ = 0:

l̇Λa ≡ ∆a(T )− r(Z)
∫ ∞

0
Y (t)a(t)dΛ(t) =

∫ ∞
0

a(t)dM(t),(4.6)

l̇φjhj ≡ hj(Wj)[∆− r(Z)Λ(T )] =
∫ ∞

0
hj(Wj)dM(t), 1 ≤ j ≤ J,(4.7)

l̇β ≡ X[∆− r(Z)Λ(T )] =
∫ ∞

0
XdM(t).(4.8)

Define L2(P
(u)
T ) ≡ {a : E[∆a2(T )] < ∞}, and L0

2(P
(u)
Wj

) ≡ {hj : E[∆hj(Wj)] =

0;E[∆h2
j(Wj) <∞}, 1 ≤ j ≤ J . And let

AΛ = {l̇Λa : a ∈ L2(P
(u)
T )},

and
Hj = {l̇φjhj : hj ∈ L0

2(P
(u)
Wj

)}, 1 ≤ j ≤ J.

Let h∗ = (h∗1, . . . , h
∗
J) and l̇φh

∗ = l̇φ1h
∗
1 + · · ·+ l̇φJh

∗
J . To calculate the information bound for

β, we need to find the (least favorable) direction (a∗, h∗1, . . . , h
∗
J) such that l̇β − l̇Λa∗− l̇φh∗ is

orthogonal to the sumspace A = AΛ +H1 + · · ·+HJ . That is, (a∗, h∗1, . . . , h
∗
J) must satisfy

E{[l̇β − l̇Λa∗ − l̇φh∗]l̇Λa} = 0, a ∈ L2(P
(u)
T ),

E{[l̇β − l̇Λa∗ − l̇φh∗]l̇φjhj} = 0, hj ∈ L0
2(P

(u)
Wj

), 1 ≤ j ≤ J.

By the martingale representations given in (4.6), (4.7) and (4.8), these two equations can be
written as

E
[∫

(X − a∗ − h∗1 − · · · − h∗J)dM
∫
adM

]
= 0,(4.9)

E
[∫

(X − a∗ − h∗1 − · · · − h∗J)dM
∫
hjdM

]
= 0, 1 ≤ j ≤ J.(4.10)

By Lemma 1 of Sasieni (1992b), for any measurable ψk : R+ × Rd+J → Rq satisfying
E[ψ2

j (T, Z)] <∞, k = 1, 2,

E
[∫

ψ1(t, Z)dM(t)
∫
ψ2(t, Z)dM(t)

]
= E[∆ψ1(T, Z)ψ2(T, Z)],(4.11)

provided that the compensator of M is absolutely continuous. So (4.9) and (4.10) are
equivalent to

E[∆(X − a∗ − h∗1 − · · · − h∗J)a] = 0, a ∈ L2(P
(u)
T ),
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E[∆(X − a∗ − h∗1 − · · · − h∗J)hj] = 0, hj ∈ L0
2(P

(u)
Wj

), 1 ≤ j ≤ J.

Therefore, we can take (a∗, h∗1, . . . , h
∗
J) to be the solution to the following equations:

E[X − a∗ − h∗1 − · · · − h∗J |T = t,∆ = 1] = 0, a.s. P
(u)
T ,(4.12)

E[X − a∗ − h∗1 − · · · − h∗J |Wj = wj,∆ = 1] = 0, a.s. P
(u)
Wj
, 1 ≤ j ≤ J.(4.13)

It follows that a∗ + h∗1 + · · · + h∗J is the projection of X onto the sumspace L ≡ L2(P
(u)
T ) +

L0
2(P

(u)
W1

) + · · ·+ L0
2(P

(u)
WJ

).
We now show that, under condition (B3), the sumspace L is closed, so that the projection

is well defined. According to Proposition 2, part A, of BKRW (1993, Appendix 4), pages

440-441, it suffices to show that for a ∈ L2(P
(u)
T ) and hj ∈ L0

2(P
(u)
Wj

), 1 ≤ j ≤ J ,

E[∆‖a+ h1 + · · ·+ hJ‖2] ≥ c{E[∆‖a‖2] + E[∆‖h1‖2] + · · ·+ E[∆‖hJ‖2]}(4.14)

for a constant c > 0. Under conditions (B4) and (B5), (4.14) follows from Lemma 1 of Stone
(1985). Moreover, because of (4.14), (a∗, h∗1, . . . , h

∗
J) is unique, and the population version

of the back-fitting algorithm, which is the inner loop of the ACE algorithm of Breiman and
Friedman (1985), converges to (a∗, h∗1, . . . , h

∗
J).

The above calculation directly projects l̇β onto the sumspace A. By (4.11), the problem
is transformed to the calculation of the projection of X onto the sumspace L. Because L
has a more transparent structure than A, the calculation becomes much easier. Also, with
A, it is easier to formulate appropriate conditions so that the projection is well defined and
unique.

A different approach is to first eliminate the hazard function by projecting the scores
l̇β and l̇φj onto the tangent space for the hazard, and then projecting the residual of the

projection of l̇β onto the sumspace generated by the residual scores of the projection of l̇φj .
This route was used by Sasieni (1992b). An advantage of this approach is that it is more
naturally related to the partial likelihood.

We now outline this approach for the present model. Let S be an operator taking
measurable functions of Z to functions of t defined by Sa(t) = E[a(Z)r(Z)1[T≥t]], and let
S0(t) = E[r(Z)1[T≥t]]. Denote Sk(t) = SZk

1 , k = 0, 1. A useful identity due to Sasieni [1992b,
Lemma 2] is

Sa(t)

S0(t)
= E[a(Z)|T = t, δ = 1].(4.15)

By Proposition 1 (iii) of Sasieni (1992b), regression scores orthogonal to the tangent space
for the hazard are:

Kjhj = l̇φjhj − l̇Λ
(
Shj
S0

)
≡
∫
Djhj(z,t)dM(t|z),

12



where Dj : L0
2(P

(u)
Wj

)→ L2(P (u)) is defined by

Djhj(wj, t) = hj(wj)−
Shj
S0

(t) = hj(wj)− E[hj|T = t,∆ = 1], 1 ≤ j ≤ J.

In other words, Kj’s are the residual scores of the projection of l̇φj onto the tangent space
for the hazard. By Theorem 1 (ii) of Sasieni (1992b), the residual scores of the projection of
l̇β onto the tangent space for the hazard is

Kβ = l̇β − l̇Λ
(
S1

S0

)
=
∫
DX(z, t)dM(t|z),

where

DX(z, t) = z − S1

S0

(t) = z − E[Z|T = t,∆ = 1].

In the remaining of this section, let h ≡ (h1, . . . , hJ) where hj ∈ L0
2(P

(u)
Wj

), denote Kh =

K1h1 − · · · − KJhJ . The least favorable direction is h∗ ≡ (h∗1, . . . , h
∗
J) with h∗j ∈ L0

2(P
(u)
Wj

)
that minimizes:

E ‖Kβ −Kh‖2 .(4.16)

Equivalently, h∗ is the direction such that Kβ−Kh∗ is orthogonal to Kh for all h = (h1 · · ·hJ)

with hj ∈ L0
2(P

(u)
Wj

). Therefore, h∗ must satisfy

E[(Kβ −Kh∗)Kjhj] = 0, for every hj ∈ L0
2(P

(u)
Wj

), 1 ≤ j ≤ J.(4.17)

To see that such a h∗ exists, denote Dh∗ = D1h
∗
1 + · · · + DJh

∗
J . By Lemma 1 of Sasieni

(1992b), as in the proof of Proposition 2 of the same article, we have

E[(Kβ −Kh∗)Kjhj] = E[D′j(DX −Dh∗)hj].

Therefore,
D′j(DX −Dh∗) = 0, a.s.− P (u)

Wj
, 1 ≤ j ≤ J.

By Lemma 3 of Sasieni (1992b),

D′jDX(wj) = E[X − E(X|T = t,∆ = 1)|Wj = wj,∆ = 1],

D′jDh
∗(wj) = E[h∗(W )− E(h∗(W )|T = t,∆ = 1)|Wj = wj,∆ = 1].

Therefore, h∗ satisfies

E[X − h∗(W )− E(X − h∗(W )|T = t,∆ = 1)|Wj = wj,∆ = 1] = 0, a.s.− P (u)
Wj
.(4.18)

for 1 ≤ j ≤ J . Let
a∗(t) = E[X − h∗(W )|T = t,∆ = 1].(4.19)

It is seen that equations (4.18) and (4.19) are equivalent to (4.12) and (4.13).
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5. Rate of convergence and asymptotic normality

In this section, we prove Theorems 3.2 and 3.3. In the proof of Theorem 3.2, we first
obtain a suboptimal convergence rate by taking the advantage of the concavity of the partial
likelihood. This enables us to work in a sufficiently small neighborhood of the parameters.
We then use Theorem 3.4.1 of Van der Vaart and Wellner (1996, pages 322-323) to obtain
the rates of convergence. The proof of Theorem 3.3 is based on Theorem 6.1 of Huang
(1996), which provides a set of sufficient conditions for the maximum likelihood estimator
of the finite-dimensional parameter in a class of semiparametric models to satisfy a central
limit theorem. Although we are dealing with a partial likelihood, the approach there can be
adapted to the present situation.

Throughout this section, denote the regression function by g(z) = x′β + φ(w) with
φ(w) = φ1(w1) + · · · + φJ(wJ). To avoid confusions, let (β0, φ0) be the true parameter
value. Denote g0(z) = x′β0 + φ0(w). By Lemma 7.5, there exists φn ∈ Φn such that
‖φn − φ0‖∞ = Op(n

−vp + n−(1−v)). Let gn(z) = x′β0 + φn(w). Also denote the estimator of

g0 by ĝn(z) = x′β̂n + φ̂n(w).
Let Pn be the empirical measure of (Ti,∆i, Zi), 1 ≤ i ≤ n, and let P be the probability

measure of (T,∆, Z). Let P∆n be the (subprobability) empirical measure of (Ti,∆i =
1, Zi), 1 ≤ i ≤ n, and let P∆ be subprobability measure of (T,∆ = 1, Z). It is convenient
to use the linear functional notation. So for example, P∆nf =

∫
fdP∆n =

∫
∆fdPn =

n−1∑n
i=1 ∆if(Ti,∆i, Zi) for any f such that this integral is well-defined.

5.1. Rate of convergence Throughout this subsection, we assume that conditions
(B1) to (B5) hold and 0 < v < 0.5. For 0 ≤ t ≤ τ , let Y (t) = 1[T≥t] and Yj(t) = 1[Tj≥t], 1 ≤
j ≤ n. Denote

S0n(t, g) = n−1
n∑
j=1

Yj(t) exp(g(Zj)), S0(t, g) = EY (t) exp(g(Z)),(5.20)

and

S1n(t, g)[h] = n−1
n∑
j=1

Yj(t)h(Zj) exp(g(Zi)), S1(t, g)[h] = EY (t)h(Z) exp(g(Z))(5.21)

Let τ be given in condition (B3)(i). The logarithm of the partial likelihood is

Mn(g) = n−1
n∑
i=1

1[0≤Ti≤τ ]∆i[g(Zi)− logS0n(Ti, g)].

Denote mn(t, x, g) = [g(z)− logS0n(t, g)]1[0≤t≤τ ] and m0(t, x, g) = [g(z)− logS0(t, g)]1[0≤t≤τ ].
Then

Mn(g) = P∆nmn(·, g).
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Let
M0(g) = P∆m0(·, g).

For notational convenience, in the remaining of the proofs including those in this section and
in Section 7, we will drop the indicator function 1[0≤t≤τ ] in the summation and integration
or in the integrand of the subprobability measure P∆ or the empirical measure P∆n.

Lemma 5.1. Let qn = Kn + l be the number of polynomial spline basis functions defined
in Section 2.

‖ĝn − gn‖2
2 = op(q

−1
n ).

Subsequently, by Lemma 7 of Stone (1986a), ‖ĝn − gn‖∞ = op(1).

Proof. Let b ∈ Rd and ψn ∈ Φn be such that ‖x′b + ψn(z)‖2
2 = O(q−1

n ). Denote hn(z) =
x′b+ ψn(z). Let Hn(α) = Mn(gn + αhn). The derivative of Hn is

H ′n(α) =
1

n

n∑
i=1

∆i

[
hn(Zi)−

n−1∑n
j=1 Yj(t)hn(Zj) exp[(gn + αhn)(Zi)]

n−1
∑n
j=1 Yj(t) exp[(gn + αhn)(Zi)]

]

= P∆n

[
hn −

S1n(·, gn + αhn)[hn]

S0n(·, gn + αhn)

]
.

By concavity of Mn(g), H ′n(α) is a nonincreasing function. Therefore, to prove the lemma, it
suffices to show that for any α = α0 > 0, H ′n(α0) < 0 and H ′n(−α0) > 0 except on an event
with probability tending to zero, because then ĝn must be between gn−α0hn and gn +α0hn,
and so ‖ĝn − gn‖2 ≤ α0‖hn‖2. Let bn = gn + α0hn, and let

An(t) =
S1(·, bn)[hn]

S0(·, bn)
− S1n(·, bn)[hn]

S0n(·, bn)
.

By adding and subtracting terms, we have

H ′n(α0) = P∆nAn + (P∆n − P∆)

[
hn −

S1(·, bn)[hn]

S0(·, bn)

]
+ P∆

[
hn −

S1(·, bn)[hn]

S0(·, bn)

]
≡ I1n + I2n + I3n.

The first term |I1n| ≤ sup0≤t≤τ |An(t)|. Write

S0(t, bn)S0n(t, bn)An(t)

= S1(t, bn)[hn]{S0n(t, bn)− S0(t, bn)} − S0(t, bn){S1n(t, bn)[hn]− S1(t, bn)[hn]}
≡ J1n(t) + J2n(t).

By Lemma 7 of Stone (1986a), ‖hn‖∞ ≤ cq1/2
n ‖hn‖2 = Op(1). By Lemma 7.1, using Corollary

7.2 on the bracket number forM2 and using sup0≤t≤τ |S1(t, bn)[hn]| ≤ ‖hn‖2 = O(q−1/2
n ), we

have
sup

0≤t≤τ
|J1n(t)| = Op(1)‖hn‖2n

−1/2(q1/2
n + q−1/2

n log.5 qn) = Op(n
−1/2),
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and

sup
0≤t≤τ

|J2n(t)| = Op(1)n−1/2q−1/2
n (q1/2

n + log.5 qn) = Op(n
−1/2).

Thus I1n = Op(n
−1/2), since inf0≤t≤τ S0(t, bn)S0n(t, bn) > 1/c1 for some constant c1 > 0.

Likewise, the second term I2n = Op(n
−1/2). For the third term, because

P∆

[
hn −

S1(·, g0)[hn]

S0(·, g0)

]
= 0,

we have, by adding and subtracting terms,

I3n = −P∆

[
S1(·, bn)[hn]

S0(·, bn)
− S1(·, gn)[hn]

S0(·, gn)

]
− P∆

[
S1(·, gn)[hn]

S0(·, gn)
− S1(·, g0)[hn]

S0(·, g0)

]
.

By Lemma 7.4, using P∆ngn = 0 and P∆nhn = 0, as in the proof of Lemma 7.6, we have

I3n ≤ −c2α0q
−1
n +Op(n

−1qn) = −c2α0n
−v +Op(n

−(1−v)).

Therefore, because 0 < v < 0.5, we have,

H ′(α0) ≤ −c2α0n
−v +O(n−1/2) +O(n−(1−v)) < 0

except on an event with probability converging to zero. Similarly, we can show that
H ′(−α0) > 0 with high probability. This completes the proof of the lemma. 2

Proof of Theorem 3.2. We first prove that

E sup
η/2≤‖g−gn‖2≤η

|Mn(g)−Mn(gn)− (M0(g)−M0(gn))| = n−1/2η(qn +
√

log(1/η)).(5.22)

Observe that

Mn(g)−Mn(gn)− (M0(g)−M0(gn))(5.23)

= (P∆n − P∆)[m0(·, g)−m0(·, gn)]− P∆n

[
log

S0n(·, g)

S0n(·, gn)
− log

S0(·, g)

S0(·, gn)

]
≡ I1n(g)− I2n(g).

For the first term I1n, by Van der Vaart and Wellner (1996), Lemma 3.4.1,

E sup
‖g−gn‖2≤η

|I1n(g)| = n−1/2m1/2
n η.
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For the second term I2n, we have, for a constant c1 > 0,

sup
‖g−gn‖2≤η

|I2n| ≤ 2 sup
0≤t≤τ,‖g−gn‖2≤η

∣∣∣∣∣log
S0n(·, g)

S0n(·, gn)
− log

S0(·, g)

S0(·, gn)

∣∣∣∣∣
≤ c1 sup

0≤t≤τ,‖g−gn‖2≤η

∣∣∣∣∣ S0n(·, g)

S0n(·, gn)
− S0(·, g)

S0(·, gn)

∣∣∣∣∣
≤ c1n

−1/2η(q1/2
n + log.5(η−1)

with probability arbitrarily close to one for n sufficiently large, where the last inequality
follows from Lemma 7.3, part (i). Therefore, by Van der Vaart and Wellner (1996), Theorem
3.4.1, pages 322-323, choosing the distance dn defined in that theorem to be d2

n(ĝn, gn) =
−(P∆m0(·, ĝn)− P∆m0(·, gn)), we have

−r2
1n[P∆m0(·, ĝn)− P∆m0(·, gn)] = Op(1),

where r1n satisfys
r2

1n(r−1
1n q

1/2
n + r−1

1n log1/2 r1n) = O(n1/2).

It follows that r1n = q−1/2
n n1/2 = n(1−v)/2. Therefore, by Lemma 7.6, for a constant c2 > 0,

c2‖ĝn − gn‖2
2 ≤ Op(n

−(1−v) + n−2vp).

Because ‖gn − g0‖2
∞ = Op(n

−2vp + n−(1−v)), we have

‖ĝn − g0‖2
2 = Op(n

−(1−v) + n−2vp).

By conditions (B4) and (B5), it follows that

E∆‖X ′β̂n + φ̂n(W )− (X ′β0 + φ0(W ))‖2
2 = Op(n

−(1−v) + n−2vp).

Therefore for the projections a∗ and h∗(w) = h∗1(w1) + · · ·+ h∗J(wJ) defined in Section 4,

E∆‖(X − a∗(T )− h∗(W ))′(β̂n − β0) + (a∗(T ) + h∗(W ))′(β̂n − β0) + φ̂n(W )− φ0(W ))‖2
2

= E∆‖(X − a∗(T )− h∗(W ))′(β̂n − β0)‖2
2 + E∆‖a∗(T ) + h∗(W ))′(β̂n − β0) + φ̂n(W )− φ0(W ))‖2

2

= Op(n
−(1−v) + n−2vp),

where the first equality follows from orthogonality given in (4.12) and (4.13). Because
E[∆(X − a∗(T ) − h∗(W ))]⊗ is assumed to be nonsingular, it follows that ‖β̂n − β0‖2

2 =
Op(n

−(1−v) + n−2vp). This in turn implies

E∆‖φ̂n(W )− φ0(W )‖2
2 = Op(n

−(1−v) + n−2vp).

Thus by Lemma 1 of Stone (1985), (B4) and (B5),

E‖φ̂jn(W )− φj(W )‖2
2 = Op(n

−(1−v) + n−2vp), 1 ≤ j ≤ J.

The result follows. 2
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5.2. Asymptotic normality and efficiency Throughout this section, we assume
that conditions (B1) to (B6) hold. The proof Theorem 3.3 is built on the following three
lemmas.

Let u = (t, x, w). For a real-valued function h of w ∈ RJ , define

sn(u, g)[h] = h(w)− S1n(t, g)[h]

S0n(t, g)
, and s(u, g)[h] = h(w)− S1(t, g)[h]

S0(t, g)
,

where Skn and Sk, k = 0, 1 are defined in (5.20) and (5.21), but now we take h to be a
function of w ∈ RJ . To simplify (and slightly abuse) the notation, for a vector x ∈ Rd and
the identity map I(x) = x, denote

sn(u, g)[x] = x− S1n(t, g)[I]

S0n(t, g)
, and s(u, g)[x] = x− S1(t, g)[I]

S0(t, g)
.

We also write sn(u, β, φ) = sn(u, g) and so on.

As in likelihood estimation, we shall call the derivatives of the partial likelihood with
respect to the parameters (partial) score functions. The score function based on the partial
likelihood for β is

l̇nβ(β, φ) = P∆nsn(·, β, φ)[x].

The score function based on the partial likelihood for φ in a direction hn ∈ Φn is

l̇nφ(β, φ)[hn] = P∆nsn(·, β, φ)[hn].

By the definition of (β̂n, φ̂n), (i.e., it maximizes the partial likelihood),

l̇nβ(β̂n, φ̂n) ≡ P∆nsn(·, β̂n, φ̂n)[x] = 0,(5.24)

and for any hn ∈ Φn,

l̇nφ(β̂n, φ̂n)[hn] ≡ P∆nsn(·, β̂n, φ̂n)[hn] = 0.(5.25)

The first key step (Lemma 5.2) in proving Theorem 3.3 is to show that the partial score
function l̇nφ evaluated at (β̂n, φ̂n) along the least favorable direction is nearly zero.

Lemma 5.2. Let h∗ be defined by h∗(w) = h∗1(w1)+ · · ·+h∗J(wJ) (note that this is different
from the notation we used in Section 4).

l̇nφ(β̂n, φ̂n)[h∗] ≡ P∆nsn(·, β̂n, φ̂n)[h∗] = op(n
−1/2).(5.26)
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Proof. By condition (B6), and equations (4.12) and (4.13), it can be shown that h∗ is
qth differentiable and its qth derivative is bounded. Thus according to Corollary 6.21 of
Schumaker (1981), page 227, there exists an h∗n ∈ Φn such that

‖h∗n − h∗‖∞ = O(q−qn ).

By (5.25),

l̇nφ(β̂n, φ̂n)[h∗] = l̇nφ(β̂n, φ̂n)[h∗]− l̇nφ(β̂n, φ̂n)[h∗n]

= P∆n

[
h∗ − h∗n −

(
S1n(·, ĝn)[h∗]

S0n(·, ĝn)
− S1n(·, ĝn)[h∗n]

S0n(·, ĝn)

)]

= P∆n

[
h∗ − h∗n −

S1n(·, ĝn)[h∗ − h∗n]

S0n(·, ĝn)

]
≡ I1n + I2n + I3n,

where

I1n = (P∆n − P∆)

[
h∗ − h∗n −

S1(·, ĝn)[h∗ − h∗n]

S0(·, ĝn)

]
,

I2n = P∆n

[
S1(·, ĝn)[h∗ − h∗n]

S0(·, ĝn)
− S1n(·, ĝn)[h∗ − h∗n]

S0n(·, ĝn)

]
,

and

I3n = P∆

[
h∗ − h∗n −

S1(·, ĝn)[h∗ − h∗n]

S0(·, ĝn)

]
.

By the maximal inequality in Lemma 7.1 and some entropy calculation similar to those in
Corollary 7.1, it follows that, I1n = op(n

−1/2). By Lemma 7.3, part (ii), I2n = op(n
−1/2).

Now consider the third term I3n. By (4.15),

P∆

[
h∗ − h∗n −

S1(·, g0)[h∗ − h∗n]

S0(·, g0)

]
= E[∆(h∗ − h∗n)− E(∆(h∗ − h∗n)|T = t,∆ = 1)] = 0,

so we have

I3n = P∆

[
S1(·, g0)[h∗ − h∗n]

S0(·, g0)
− S1(·, ĝn)[h∗ − h∗n]

S0(·, ĝn)

]
.

By Lemma 7.4, there exists a constant c > 0 such that

|I3n| ≤ c‖h∗ − h∗n‖∞‖ĝn − g0‖2.

Therefore, I3n = n−qvOp(n
−vp + n−(1−v)/2) = op(n

−1/2) by the restriction on v stated in
Theorem 3.3. This proves the lemma. 2
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Lemma 5.3.

P∆n{sn(·, ĝn)[x]− sn(·, g0)[x]} − P∆{s(·, ĝn)[x]− s(·, g0)[x]} = op(n
−1/2),(5.27)

and

P∆n{sn(·, ĝn)[h∗]− sn(·, g0)[h∗]} − P∆{s(·, ĝn)[h∗]− s(·, g0)[h∗]} = op(n
−1/2).(5.28)

Proof. We only prove (5.28), because the proof of (5.27) is similar. The right side of
(5.28) is bounded by the sum of two terms:

I1n ≡ |(P∆n − P∆){s(·, ĝn)[h∗]− s(·, g0)[h∗]}|,

and

I2n ≡ P∆n{sn(·, ĝn)[h∗]− sn(·, g0)[h∗]− (s(·, ĝn)[h∗]− s(·, g0)[h∗])}|.

For I1n, by Lemma 7.4 in Section 7 P [s(·, ĝn)[h∗] − s(·, g0)[h∗]]2 ≤ O(‖ĝn − g0‖2
2), and the

ε-bracketing number of the class of functions S1(η) = {s(·, g)[h∗]− s(·, g0)[h∗] : ‖g − g0‖2 ≤
η ∈ G} is qn log(η/ε) + log(1/ε). The corresponding entropy integral J[](η, S1(η), L2(P )) is
η(q1/2

n + log.5(1/η)). Therefore, by Lemma 7.1 and Theorem 3.2, for rn ≡ n(1−v)/2 + nvp,

EI1n ≤ O(1)n−1/2r−1
n [qn + log.5(rn)] = o(n−1/2).

For I2n, the integrand of the empirical measure is

II2n(t) ≡ S1n(t, ĝn)[h∗]

S0n(t, ĝn)
− S1n(t, g0)[h∗]

S0n(t, g0)
−
[
S1(t, ĝn)[h∗]

S0(t, ĝn)
− S1(t, g0)[h∗]

S0(t, g0)

]
.

It is shown in Lemma 7.7 in Section 7 that

sup
0≤t≤1

|II2n(t)| = op(n
−1/2).

This completes the proof. 2

Lemma 5.4.

P∆{s(·, ĝn)[x− h∗]− s(·, g0)[x− h∗]}
= −P∆{s(·, ĝn)[x− h∗]}⊗2(β̂n − β0) +O(‖β̂n − β0‖2 + ‖φ̂n − φ0‖2

2)

= −P∆{s(·, ĝn)[x− h∗]}⊗2(β̂n − β0) + op(n
−1/2).
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Proof. By Lemma 7.4 in Section 7, we have

P∆{s(·, ĝn)[x− h∗]− s(·, g0)[x− h∗]}
= −P∆s(·, g0)[x− h∗]s(·, g0)[x](β̂n − β0)− P∆s(·, g0)[x− h∗]s(·, g0)[φ̂n − φ0]

+O(‖β̂n − β0‖2 + ‖φ̂n − φ0‖2
2).

However, by (4.17) in Section 4,

P∆s(·, g0)[x− h∗]s(·, g0)[φ̂n − φ0] = 0,

and

P∆s(·, g0)[x− h∗]s(·, g0)[x] = P∆{s(·, g0)[x− h∗]}⊗2,

Because ‖β̂n − β0‖2 = op(n
−1/2) and ‖φ̂n − φ0‖2

2 = op(n
−1/2) by Theorem 3.2, the lemma

follows . 2

Proof of Theorem 3.3. By Lemmas 5.2, 5.3 and 5.4 and using the same proof of Huang
(1996), Theorem 6.1, we have

n1/2P∆{s(·, g0)[x− h∗]}⊗2(β̂n − β0) = n1/2P∆nsn(·, g0)[x− h∗] + op(1).

So asymptotic normality of β̂n follows directly by the martingale central limit theorem.
However, the following argument shows that β̂n is asymptotically linear in the efficient
influence function. Let Mi(t) = ∆i1[Ti≤t] −

∫ t
0 Yi(u) exp(g0(Zi))dΛ0(u), 1 ≤ i ≤ n. We

can write

n1/2P∆nsn(·, g0)[x− h∗] = n−1/2
n∑
i=1

∫ τ

0

[
Xi − h∗(Wi)−

S1n(t, g0)[x− h∗]
S0n(t, g0)

]
dMi(t).

Thus

n1/2P∆nsn(·, g0)[x− h∗]− n−1/2
n∑
i=1

∫ τ

0

[
Xi − h∗(Wi)−

S1(t, g0)[x− h∗]
S0(t, g0)

]
dMi(t)

= n−1/2
n∑
i=1

∫ τ

0

[
S1(t, g0)[x− h∗]

S0(t, g0)
− S1n(t, g0)[x− h∗]

S0n(t, g0)

]
dMi(t).

Because

n−1
n∑
i=1

∫ τ

0

[
S1(t, g0)[x− h∗]

S0(t, g0)
− S1n(t, g0)[x− h∗]

S0n(t, g0)

]2

Yi(u) exp(g0(Zi))dΛ0(u)→p 0,
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by Lenglart’s inequality as stated in Theorem 3.4.1 and Corollary 3.4.1 of Fleming and
Harrington (1991), or Andersen, Borgan, Gill and Keiding (1993), page 86, we have

n1/2P∆nsn(·, g0)[x− h∗] = n−1/2
n∑
i=1

∫ τ

0

[
Xi − h∗(Wi)−

S1(t, g0)[x− h∗]
S0(t, g0)

]
dMi(t) + op(1).

However, by (4.15),

S1(t, g0)[x− h∗]
S0(t, g0)

= E[X − h∗(W )|T = t,∆ = 1] = a∗(t).

By the definition of the efficient score function l∗β, we have

√
nP∆ns(·, g0)[x− h∗] = n−1/2

n∑
i=1

l∗β(Ti,∆i, Zi) + op(1)→d N(0, I(β0)).

Therefore, the result follows. This completes the proof. 2
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6. Concluding remarks

In this paper, we studied asymptotic properties of the maximum partial likelihood estimator
of the partly linear additive Cox model using polynomial splines for the nonparametric
regression components. We have elected to only consider the model with time-independent
covariates in the random right-censorship setting, because this type of data arises often in
practice and because the technical details involved already appear to be not straightforward.
It seems that the results can be extended to the multiplicative intensity model with time-
dependent covariates (and a partly linear regression function) as described by Andersen
and Gill (1982). If methods similar to the present one is to be used, two aspects not
discussed in this paper need to be addressed. First, the information bound calculation
(or the similar type of projection calculation) must be done for partial score operators and
partial score functions involving time-dependent covariates. This calculation will be helpful
in separating the root-n consistent estimator from estimators with lower rates of convergence.
Second, there should be a maximal inequality similar to Lemma 7.1 for martingale integrals
indexed by classes of functions with appropriate bracketing entropy numbers. This type of
inequality is useful in establishing rates of convergence and controlling remainder terms in
the asymptotic normality proof.
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7. Appendix: Technical lemmas

In this appendix, we collect several lemmas that are used in the previous sections.

For any probability measure Q, define L2(Q) = {f :
∫
f 2dQ < ∞}. Let || · ||2 be the

usual L2 norm, i.e., ||f ||2 = (
∫
f 2dQ)1/2. For any subclass F of L2(Q), define the bracketing

number N[](ε,F , L2(Q)) = min{m : there exist fL1 , f
U
1 , . . . , f

L
m, f

U
m such that for each f ∈

F , fLi ≤ f ≤ fUi for some i, and ||fUi − fLi ||2 ≤ ε}. Denote J[](η,F , L2(Q)) =∫ η
0

√
1 + logN[](ε,F , L2(Q)) dε.

The following lemma used in the previous sections is Lemma 3.4.2 of van der Vaart
and Wellner (1996). Let X1, . . . , Xn be i.i.d. random variables with distribution Q, and
Qn be the empirical measure of these random variables. Denote Gn =

√
n(Qn − Q), and

||Gn||F = supf∈F |Gnf | for any measurable class of functions F .

Lemma 7.1. Let M0 be a finite positive constant. Let F be a uniformly bounded class of
measurable functions such that Qf2 < η2 and ||f ||∞ ≤M0. Then

E∗Q||Gn||F ≤ C0J[](η,F , L2(Q))

(
1 +

J[](η,F , L2(Q))

η2
√
n

M0

)
,

where C0 is a finite constant not dependent on n .

Lemma 7.2. For any η > 0, let

Θn = {x′β + φ(w) : ‖β − β0‖ ≤ η, φj ∈ Sn, ‖φj − φ0j‖2 ≤ η, 1 ≤ j ≤ J}.

Then, for any ε ≤ η,

logN[](ε,Θn, L2(P ))) ≤ c(qn log(η/ε)).

(Recall qn = Kn + l + 1 is the number of spline basis functions.)

Proof. By the calculation of Shen and Wong (1994), page 597, logN[](ε,Sn, L2(P ))) ≤
c1(qn log(η/ε)). Therefore, the logarithm of the bracketing number of the class

Φn = {φ(z) : φ(z) = φ1(z1) + · · ·φJ(zJ) : φj ∈ Sn, 1 ≤ j ≤ J}

is also c2(qn log(η/ε)). Since the neighborhood B(η) ≡ {β : ‖β − β0‖ ≤ η} in Rd can be
covered by c3(η/ε)d balls with radius ε, the logarithm of the bracketing number of Θn is
bounded by c2qn log(η/ε) + c3 log(η/ε)] ≤ cqn log(η/ε) for c = max{c2, c3}. 2

As a consequence of Lemma 7.2, we have
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Corollary 7.1. Let m0(t, η, x, z; β, φ) = x′β+φ(z)− logS0(t; β, φ), m1(t, x, z; s, β, φ) =
1[τ≥t≥s] exp(x′β + φ(z)), and m2(t, x, z; s, β, b, φ) = 1[τ≥t≥s]h(z) exp(x′β + φ(z)). Define the
classes of functions

M0(η) = {m0 : ‖β − β0‖ ≤ η, ‖φ− φ0‖2 ≤ η},

M1(η) = {m1 : 0 ≤ s ≤ τ, ‖β − β0‖ ≤ η, ‖φ− φ0‖2 ≤ η},

and

M2(η) = {m2 : 0 ≤ s ≤ τ, ‖β − β0‖ ≤ η, ‖h‖2 ≤ η, ‖φ− φ0‖2 ≤ η}.

Then for any ε < η,

logN[](ε,M0(η), L2(P )) ≤ c0qn log(η/ε),

and

logN[](ε,Mj(η), L2(P )) ≤ cj[qn log(η/ε) + log(τ/ε)], j = 1, 2.

Consequently,

J[](η,M0, L2(P )) ≤ c0q
1/2
n η,

and

J[](η,Mj, L2(P )) ≤ cj[q
1/2
n η + η log1/2(1/η)], j = 1, 2.

Proof. Because exp is monotone, by Lemma 7.2, the entropy of the class consists of
functions exp(x′β + φ(z)) for x′β + φ(z) ∈ Θn is bounded by cqn log(η/ε). The ε-bracketing
entropy of the indicator functions 1[τ≥t≥s], s ∈ [0, τ ], is bounded by log(τ/ε). The classM1(η)
is obtained by multiplying exp(x′β + φ(z)) by 1[τ≥t≥s], therefore, its bracketing entropy is
bounded by the sum of cqn log(η/ε) + c log(τ/ε). 2

Lemma 7.3. (i) Let c be a finite constant and η be a small positive constant. Define the
class of functions

G = {g : g(z) = x′β + φ(w), φ(w) ∈ Φn, ‖g − gn‖ ≤ η, ‖g‖∞ ≤ c}.

Then

sup
t∈[0,1],g∈G

∣∣∣∣∣ S0n(t; g)

S0n(t; g0)
− S0(t; g)

S0(t; g0)

∣∣∣∣∣ = ηn−1/2Op(q
1/2
n + log.5(η−1)).(7.29)

(ii) Suppose hn ∈ Φn is a sequence of uniformly bounded functions and ‖hn‖2 = O(q−1
n ).

Then

sup
t∈[0,1]

∣∣∣∣∣S1n(t; gn)[hn]

S0n(t; gn)
− S1(t; gn)[hn]

S0(t; gn)

∣∣∣∣∣ = op(n
−1/2).(7.30)
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Proof. (i) Because

S0n(t; g)

S0n(t; gn)
− S0(t; g)

S0(t; gn)
=
S0n(t; g)S0(t; gn)− S0n(t; gn)S0(t; g)

S0n(t; gn)S0(t; gn)
,

and because the denominator on the right side is bounded away from zero with probability
tending to one, we only need to consider the numerator. Write

S0n(t; g)S0(t; gn)− S0n(t; gn)S0(t; g) = S0(t; gn)[S0n(t; g)− S0n(t; gn)− S0(t; g) + S0(t; gn)]

− [S0n(t; gn)− S0(t; gn)][S0(t; g)− S0(t; gn)].

The first term on the right side is

(Pn − P ){y(t)[exp(g(z))− exp(gn(z))]} = n−1/2ηOp(q
1/2
n + log.5(η−1)).

Because S0n(t; gn)− S0(t; gn) = Op(n
−1/2q1/2

n ), and

|S0(t; g)− S0(t; gn)| ≤ E{Y (t)| exp(g)− exp(gn)|} ≤ C[E(gn − g)2]1/2,

we have [S0n(t; gn)− S0(t; gn)][S0(t; g)− S0(t; gn)] = Op(n
−1/2q1/2

n η). Therefore,

S0n(t; gn)S0(t; g0)− S0n(t; g0)S0(t; gn) = n−1/2ηOp(q
1/2
n + log.5(η−1)).

(ii) Write

S1n(t; gn)[hn]

S0n(t; gn)
− S1(t; gn)[hn]

S0(t; gn)

=
S0(t; gn)[S1n(t; gn)[hn]− S1(t; gn)[hn]]− S1(t; gn)[hn][S0n(t; gn)− S0(t; gn)]

S0(t; gn)S0n(t; gn)
.

Because gn →p g0, the denominator of the right side of this equation is bounded away from
zero. The first term in the numerator is equal to

(P∆n − P∆){y(t)hn(z) exp(gn(z))} = op(n
−1/2).

The second term in the numerator is equal to

EY (t)[hn(z) exp(gn(z))](P∆n − P∆)[y(t) exp(gn(z))] = op(n
−1/2).

This completes the proof. 2
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Lemma 7.4. For a number 0 ≤ s ≤ 1, let

H(t, s) =
S1(t; g0 + sd)[h]

S0(t; g0 + sd)
.

Denote Ws(t) = Y (t) exp(g0 + sd)/[S0(g0 + sd)]. We have

∂

∂s
H(t; s) = E[Ws(t)h(Z)d(Z)]− E[Ws(t)h(Z)]E[Ws(t)d(Z)]

= E{Ws(t)[h(Z)− E(Ws(t)h(Z))][d(Z)− E(Ws(t)d(Z)]}

and

∂2

∂s2
H(t; s) = E[Ws(t)h(Z)d2(Z)]− 2E[Ws(t)d(Z)]E[Ws(t)h(Z)d(Z)]

− E[Ws(t)h(Z)]E[Ws(t)d
2(Z)] + 2E[Ws(t)h(Z)]E[Ws(t)d(Z)]2.

Proof. The lemma follows by direct calculation of the derivatives. Details are omitted.
2

Lemma 7.5. Let 1 ≤ j ≤ J be the integer associated with the jth covariate Wj. Suppose
that ξ ∈ G and E[∆ξ(Wj)] = 0. There exists a ξn ∈ Sn with P∆nξn = 0 and

‖ξn − ξ‖∞ = Op(n
−vp + n−(1−v)/2).

Proof. According to Corollary 6.21 of Schumaker (1981), page 227, there exists a
ξ∗n ∈ Sn such that ‖ξ∗n − ξ‖∞ = O(n−vp). Let n∆ = n−1∑n

i=1 ∆i. Let ξn = ξ∗n −
n−1

∆ n−1∑n
i=1 ∆iξ

∗
n(Wji) = ξ∗n−n−1

∆ P∆nξ
∗
n, then P∆nξn = 0. Because |ξn−ξ| ≤ |ξ∗n−ξ|+|P∆nξ

∗
n|,

we only need to consider

P∆nξ
∗
n = (P∆n − P∆)ξ∗n + P∆(ξ∗n − ξ).

Since (P∆n − P∆)ξ∗n = Op(n
−1/2nv/2), and |P∆(ξ∗n − ξ)| ≤ E(∆)‖ξ∗n − ξ‖∞ = O(n−vp), the

lemma follows from the triangle inequality. 2

Lemma 7.6. Denote m0(t, δ, x, z; g) = g(z) − logS0(t; g). Let η be a positive constant.
For any g with ‖g − gn‖∞ ≤ η and E[∆g(Z)] = 0, there exist constants 0 < c1, c2 <∞ such
that

−c1‖g−gn‖2
2+O(n−2vp+n−(1−v)) ≤ P∆m0(·; g)−P∆m0(·; gn) ≤ −c2‖g−gn‖2

2+Op(n
−2vp+n−(1−v)).
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Proof. Let g0 be the true value and let h = g − g0. First consider

L1(s) ≡ P∆m0(·; g0 + sh)− P∆m0(·; g0).

The first and the second derivatives of L1(s) are

L′1(s) = P∆[h−H1(t, s)],

L′′(s) = −P∆{E[Ws(t)h
2(Z)]− [EWs(t)h(Z)]2}.

In particular,
L′(0) = P∆[h− E(h|T = t, δ = 1)] = 0,

and

L′′(0) = −P∆{E[W0(t)h2(Z)]− [EW0(t)h(Z)]2} = −P∆{EW0(t)[h(Z)− EW0(t)h(Z)]2}.

By the definition of W0(t),

E[W0(t)|Z = z] = P (T ≥ t|Z = z) exp(g0(z))/S0(t, g0).

So there exist constants c1 > c2 > 0 such that

c2 ≤ E[W0(t)|Z = z] ≤ c1.

It follows that

c1P∆E[h(Z)−EW0(t)h(Z)]2 ≤ P∆{EW0(t)[h(Z)−EW0(t)h(Z)]2} ≤ c2P∆E[h(Z)−EW0(t)h(Z)]2.

Now by (4.15), EW0(t)h(Z) = E[h(Z)|T = t,∆ = 1], and E[∆h(Z)] = 0, we have

P∆E[h(Z)− EW0(t)h(Z)]2 = P∆δEh
2 − 2Eh(Z)E[∆h(Z)] + P∆[EW0(t)h(Z)]2

= P∆Eh
2 + P∆[EW0(t)h(Z)]2.

Furthermore, by Lemma 7.4,

|L(3)(s)| = O(1)[P∆|h|3 + P∆|h|P∆|h|2] ≤ O(1)ηP∆|h|2.

It follows that

−c1‖g − g0‖2
2 ≤ P∆m0(·, g)− P∆m0(·, g0) ≤ −c2‖g − g0‖2

2.

The same argument as above gives that

|P∆m0(·; gn)− P∆m0(·; g0)| = Op(1)‖gn − g0‖2
2 = Op(n

−2vp + n−(1−v)),
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where the second equality follows from Lemma 7.5. Finally, since

P∆m0(·; g)− P∆m0(·; gn) = P∆m0(·; g)− P∆m0(·; g0) + P∆m0(·; g0)− P∆m0(·; gn),

and by the triangle inequality,

‖g − gn‖2
2 − ‖gn − g0‖2

2 ≤ ‖g − g0‖2
2 ≤ ‖g − gn‖2

2 + ‖gn − g0‖2
2,

the lemma follows in view of Lemma 7.5. 2

Lemma 7.7. Let

I2n(t) ≡ S1n(t, ĝn)[h∗]

S0n(t; ĝn)
− S1n(t, g0)[h∗]

S0n(t; g0)
−
[
S1(t, ĝn)[h∗]

S0(t; ĝn)
− S1(t, g0)[h∗]

S0(t; g0)

]
.

We have
sup

0≤t≤1
|I2n(t)| = op(n

−1/2).

Proof. Write S0(t, g0) = S0(g0), S1(t, g0)[h∗] = S1(g0) and so on. Let

A1n(t) = S1n(g0)− S1n(ĝn)− [S1(g0)− S1(ĝn)],

A2n(t) = [S1(ĝn)− S1(g0)][S0(ĝn)− S0n(ĝn)],

A3n(t) = S0n(g0)− S0n(ĝn)− [S0(g0)− S0(ĝn)],

A4n(t) = [S0(g0)− S0(ĝn)][S1n(g0)− S1(g0)],

A5n(t) = [S0(g0)− S0(ĝn)][S0(ĝn)− S0n(ĝn)],

A6n(t) = [S0(g0)− S0(ĝn)][S0(g0)− S0n(g0)],

A7n(t) = S0(g0)S0(ĝn)S0n(g0)S0n(ĝn).

Some algebra shows that

A7n(t)I2n(t) = S0(g0)S0(ĝn)S0n(g0)A1n(t) + S0(g0)S0n(g0)A2n(t)

+ S1n(g0)S0(g0)S0(ĝn)A3n(t) + S0(g0)S0(ĝn)A4n(t)

+ S0(t, g0)S1(g0)A5n(t) + S1(g0)S0n(ĝn)A6n(t).

Because there exists a constant c > 0 such that inf0≤t≤1 A7n(t) ≥ c, and

sup
0≤t≤1

|Ajn(t)| = op(n
−1/2), 1 ≤ j ≤ 6,

the lemma follows from the triangle inequality. 2
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